Efektifitas Abu Daun Salak Dan *Waterglass* Sebagai Bahan Stabilisasi Tanah Lempung Lunak

Ermitha Ambun RD¹, Yohanis Bara Lotim², Regita O. Runtukahu³, Yulienty Sarah Mapaliey⁴

1,2,3,4 Program Studi Teknik Sipil Universitas Kristen Indonesia Toraja * Corresponding Author e-mail: ambun.rombe@gmail.com

Article History

Received: 3-12-2024

Revised: 30-12-2024

Published: 15-1-2025

Key Words:

Clay, Soft Soil, Snake Fruit Ash, Stabilization, Waterglas, CBR Abstract: The main problem of construction on soft soil is the limited bearing capacity of the soil and large and consolidation. These conditions can cause damage, both natural damage such as landslides and damage to building construction. Soil improvement is needed before construction on soft soil with the stabilization method. Soil stabilization using mixed materials is expected to minimize poor soil properties. This study aims to evaluate the impact of using snake fruit ash and water glass. The method used in this study is an experimental test in the laboratory. Sample testing was carried out at the Geotechnical Laboratory of Civil Engineering UKI Toraja. Variations of salak leaf ash and waterglass used in this study were variations of 0%, 5%, 10% and 15% of the weight of dry soil and 4% waterglass ash of the weight of water. The results of CBR soil testing without stabilization materials with 3,7,12 days of fermentation at 5% variations were 3.17%, 4.16%, 5.04%, respectively. At 7% variation of 5.73%, 8.39%, 10.6%, and at 10% variation of 11.82%, 13.8%, 17.37%.

Kata Kunci:

Abu Daun Salak, CBR, Tanah Lempung, Stabilisasi, Waterglass.

Masalah utama pembangunan konstruksi di tanah lunak adalah Abstrack: terbatasnya daya dukung dan penurunan tanah yang besar dan cenderung tidak seragam. Kondisi tersebut dapat menyebabkan kerusakan baik kerusakan alam seperti tanah longsor maupun kerusakan pada konstruksi bangunan. Perlu dilakukan perbaikan tanah sebelum dilakukan pembangunan konstruksi diatas tanah lunak dengan metode stabilisasi. Stabilisasi tanah menggunakan bahan campuran diharapkan dapat meminimalisir sifat-sifat tanah yang kurang baik. Penelitian ini bertujuan mengevaluasi dampak penggunaan abu daun salak dan waterglass. Metode yang digunakan dalam penelitian ini adalah uji eksperimental di laboratorium. Pengujian sampel dilakukan di Laboratorium Geoteknik Teknik Sipil UKI Toraja. Variasi abu daun salak dan waterglass yang digunakan dalam penelitian ini yaitu variasi 0%, 5%, 10% dan 15% dari berat tanah kering serta abu waterglass 4% dari berat air. Hasil pengujian CBR tanah tanpa bahan stabilisasi dengan Pemeraman 3,7,12 hari pada variasi 5% berturut-turut yaitu 3,17%, 4,16%, 5,04%. Pada variasi 7% sebesar 5,73%, 8,39%, 10,6%, dan pada variasi 10% sebesar 11,82%, 13,8%, 17,37%.

Pendahuluan

Pembangunan infrastruktur terus dan memerlukan lahan yang cukup luas. Hal ini menyebabkan lahan yang ada akan berkurang. Upaya yang dilakukan untuk mengatasi permasalahan tersebut salah satunya melalui pembangunan infrastrukutur diatas tanah hasil reklamasi pantai atau diatas tanah lunak (Djamaluddin et al., 2020; Harianto et al., 2021). Masalah utama pembangunan konstruksi di tanah lunak adalah terbatasnya daya dukung dan penurunan tanah yang besar dan cenderung tidak seragam. Sifat tanah seperti itu sering menyebabkan kegagalan konstruksi, tingginya biaya konstruksi dan pemeliharaan (Gultom et al., 2022). Berdasarkan data penyebaran tanah lunak di wilayah Indonesia, diperkirakan sekitar 20 juta hektar atau sekitar 10 persen dari luas total daratan Indonesia (Kementerian ESDM, 2019).

Tanah lunak dapat dibagi dalam dua tipe yaitu tanah lempung lunak dan tanah gambut. Tanah lempung lunak mengandung mineral lempung dan mengandung kadar air yang tinggi, yang menyebabkan kuat geser yang rendah, sedangkan tanah gambut pembentuk utamanya terdiri dari sisa-sisa tumbuhan (Departemen Permukiman dan Prasarana Wilayah, 2002). Sifat-sifat tanah lunak, antara lain konsistensi lunak-sangat lunak, kadar air tinggi, gaya geser kecil, kemampatan besar, daya dukung rendah dan tingkat penurunan tinggi. Tanah lunak didefinisikan sebagai tanah terkonsolidasi normal atau *over* konsolidasi (*lightly over consolidated*) dengan nilai CBR kurang dari 2,5% dan kekuatan geser (qc) lebih kecil dari 7,5 kPa, dan umumnya IP>25 (Kementerian Pekerjaan Umum dan Perumahan Rakyat, 2017; Muhiddin et al., 2021). Tanah lunak umumnya berupa tanah lempung yang memiliki kuat geser yang sangat rendah antara 25 kPa sampai 50 kPa (Terzaghi et al., 1996). Sifat inilah yang dapat menyebabkan kerusakan baik kerusakan alam seperti tanah longsor maupun kerusakan pada konstruksi bangunan. Berdasarkan kondisi tersebut, perlu dilakukan perbaikan tanah (soil improvement) sebelum dilakukan pembangunan konstruksi diatas tanah lunak.

Perbaikan tanah dengan tujuan untuk meningkatkan daya dukung tanah dapat dilakukan dengan beberapa cara, salah satunya dengan stabilisasi. Stabilisasi tanah merupakan metode perbaikkan dalam memaksimalkan kualitas tanah dasar dengan meningkatkan mutu tanah serta daya dukung tanah terhadap beban-beban yang bekerja diatasnya (Hardiyatmo, 2016; Putranto, 2020). Stabilisasi tanah dapat dilakukan dengan mencampurkan bahan kimia maupun organik dengan tanah kemudian dipadatkan. Bahan campuran tersebut diharapkan dapat meminimalisir sifat-sifat tanah yang kurang baik. Namun, bahan stabilitator banyak yang cenderung terbatas dan mahal. Oleh sebab itu penggunaan material lokal dengan pengunaan bahan alami perlu mendapat perhatian khusus karena selain ramah lingkungan mudah didapat juga memakan biaya yang tak banyak misalnya abu daun salak.

Pohon salak mudah ditemukan di Kabupaten Kabupaten Tana Toraja dan ketersediaannya cukup melimpah. Tanaman salak merupakan tanaman yang tumbuh subur di kawasan Indonesia yang beriklim tropis. Namun demikian, tidak semua bagian dari pohon salak dimanfaatkan. Daun salak biasanya tidak termanfaatkan sehingga hanya menjadi limbah lingkungan, sehingga perlu usaha pengelolaan dan pemanfaatan.

Di daerah Toraja Utara daun salak hanya digunakan sebagai bahan bakar. Namun abu daun salak merupakan salah satu bahan alami yang dapat menjadi bahan stabilisasi karena kadar kandungan silika dalam abu daun salak cukup tinggi yaitu sebesar 84,61%. Hasil uji aktivitas dianalisis menggunakan spektofotometer UV-Vis menunjukkan bahwa material silika-alumina (SiO₂/Al₂O₃) suhu 500 °C memberikan presentase adsorpsi lebih tinggi dari pada silika-alumina (SiO₂/Al₂O₃) suhu 300 °C dengan hasil masing-masing sebesar 95,23% dan 83,72%. (Lolita N.S, 2018).

Bahan lainnya yang dapat digunakan sebagai bahan stabilisasi yaitu waterglass. Waterglass dengan komposisi Sodium Metasilikat (Na₂SiO₃ atau NaSiO₃9H₂O) biasa disebut sodium silikat merupakan bagian dari garam yang larut dalam air. Seperti kristal kalau dalam bentuk padat, bila waterglass meleleh apabila dilarutkan dalam air panas. Stabilisasi tanah menggunakan waterglass bertujuan untuk meningkatkan kekuatan dan mengurangi permeabilitas tanah, terutama pada tanah ekspansif, dengan cara mengikat partikel-partikel tanah dan membentuk struktur yang lebih padat. Waterglass terikat dan lebih kuat apabila berupa cairan yang masuk kedalam pori tanah dan bereaksi dengan tanah. Waterglass akan lebih mudah masuk atau meresap kedalam tanah apabila waterglass berbentuk gel ditambahkan dengan air pada komposisi tertentu.

Issue lingkungan hidup telah menjadi perhatian serius karena berdampak signifikan terhadap kehidupan di bumi. Upaya memanfaatkan limbah organik sebagai material konstruksi merupakan seperti solusi yang ramah lingkungan. Penelitian ini bertujuan untuk mengevaluasi dampak penggunaan campuran abu daun salak dan waterglass sebagai bahan stabilisator terhadap sifat fisik dan mekanis tanah. Tujuannya adalah meningkatkan daya dukung tanah dalam hal ini daya dukung tanah lempung. Penelitian ini diharapkan dapat memberikan kontribusi positif bagi lingkungan dan dunia kontruksi dalam memanfaatkan material alam dan limbah organik.

Metode Penelitian

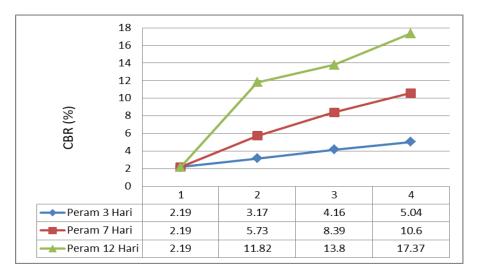
Metode yang digunakan dalam penelitian ini adalah eksperimental di laboratorium. Pengujian sampel dilakukan di Laboratorium Geoteknik Teknik Sipil UKI Toraja. Bahan yang digunakan yaitu tanah lempung, abu daun salak, dan *waterglass*.

Tanah lempung yang digunakan dalam penelitian ini berasal dari daerah Lampan Kelurahan Tallunglipu, Kecamatan Tallunglipu Kabupaten Toraja Utara. Daun salak yang digunakan merupakan limbah organik yang diambil dari perkebunan warga di Kelurahan Sarira Kecamatan Makale Utara. Daun salak yang tua dan berwarna coklat dibakar pada suhu 700 °C sehingga menghasilkan abu. Abu kemudian disaring menggunakan saringan no. 200 dan abu daun salak yang telah lolos saringan kemudian diambil dan digunakan dalam penelitian ini dengan variasi 5%, 7%, dan 10% dari berat tanah kering. *Waterglass* yang digunakan 4% dari berat air. *Waterglass* diperoleh dari toko bahan kimia.

Pengujian yang dilakukan yaitu uji California Bearing Ratio (CBR) yang dilakukan pada sampel yang telah mengalami masa pemeraman selama 1 hari, 7 hari dan 14 hari. Pengijian yang dilakukan meliputi karakteristik fisik dan mekanis pada

tanah tanpa bahan stabilisasi dan tanah dengan bahan stabilisasi, meliputi uji berat jenis tanah, uji analisa distribusi butiran, uji batas — batas konsistensi tanah dan uji kuat tekan bebas tanah.

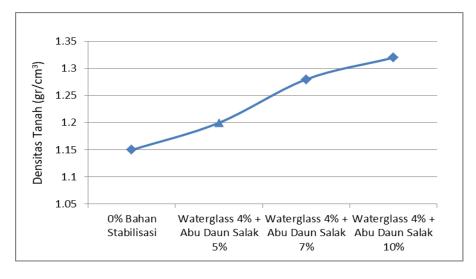
Hasil dan Pembahasan


Karakteristik fisik dan mekanis yang dimiliki tanah tanpa bahan stabilisasi dan tanah dengan bahan stabilisasi variasi campuran 5%, 7%, dan 10% abu daun salak dari berat tanah kering serta *waterglass* yang digunakan 4% dari berat air dengan waktu pemeraman 1 hari, 7 hari dan 14 hari, dapat diidentifikasi dengan melakukan percobaan penelitian di laboratorium dengan mengikuti prosedur percobaan yang ada dalam SNI. Adapun hasil pengujian dapat dilihat pada Tabel 1 untuk tanah tanpa bahan stabilisasi dan Tabel 2 menunjukkan hasil pengujian tanah dengan bahan stabilisasi

Tabel 1. Hasil Pengujian Karakteristik Fisik dan Mekanis Tanah Tanpa Bahan Stabilisasi

Jen	is pengujian	SNI	Satuan	Hasil
Berat jenis		SNI 1964-2008	-	2,739
Batas- Batas Atterberg	Batas cair (LL)	SNI 03-1967-1990	%	45,24
	Batas plastis (PL)	SNI 03-1966-1990	%	24,87
	Indeks plastis (PI)		%	20
	Batas susut (SL)	SNI 03-1966-2008	%	8,17
Pemadatan Tanah	Kadar Air (w _{c)}	CNI 1742.2000	%	35
	Berat Isi Tanah	- SNI 1742:2008	gr/cm3	1.15

Tabel 2. Hasil Pengujian Karakteristik Fisik dan Mekanis Tanah


Parameter Tanah		Persentase Penambahan Zeolit dan Abu Daun Salak					
		0%	Waterglass 4%	Waterglass 4%	Waterglass 4%		
		Bahan	+ Abu Daun	+ Abu Daun	+ Abu Daun		
		Stabilisasi	Salak 5%	Salak 7%	Salak 10%		
Kadar Air		35	32.8	30.5	29.5		
Densitas Kering		1.15	1.2	1.28	1.32		
	Peram 3		3.17	4.16	5.04		
CBR	Hari	_					
	Peram 7	2.19	5.73	8.39	10.6		
	Hari	2.19					
	Peram 12	_	11.82	13.80	17.37		
	Hari				17.37		

Gambar 1. Hubungan Nilai CBR etrhadap Variasi Penggunaan Bahan Stabilisasi

Tabel 2 dan Gambar 1 menunjukkan bahwa nilai CBR tanah mengalami peningkatan saat ditambah abu daun salak 5%, 7% dan 10% dan waterglass 4%. Pada tanah dengan bahan stabilisasi pemeraman 3 hari diperoleh nilai CBR berturut-turut 3,17%, 5,73% dan 11,82%. Pada pemeraman 7 hari diperoleh nilai CBR 4,16%, 8,39% dan 13,8%, Sedangkan pada pemeraman 12 hari diperoleh nilai CBR berturut-turut 5,04%, 10,6 % dan 17,3%.

Peningkatan daya dukung tanah terjadi sebab waterglass yang digunakan berfungsi sebagai bahan pengikat dalam proses stabilisasi tanah sehingga partikel-partikel tanah lempung dan abu daun salak melekat dengan baik. Partikel abu yang lebih kecil juga mengisi rongga diantara butiran tanah dan membuat tanah menjadi lebih solid dan padat seperti terlihat pada Gambar 2, dimana ninai densitas campuran tanah juga makin meningkat.

Gambar 2. Gambar 1. Hubungan Nilai Densitas Tanah Terhadap Variasi Penggunaan Bahan Stabilisasi

Kesimpulan

Kesimpulan dari penelitian ini menunjukkan bahwa campuran abu daun salak pada tanah dapat meningkatkan nilai daya dukung tanah dalam hal ini nilai CBR tanah lempung. Waterglass yang digunakan berfungsi sebagai bahan pengikat dalam proses stabilisasi tanah sehingga partikel-partikel tanah lempung dan abu daun salak melekat dengan baik. Partikel abu yang lebih kecil juga mengisi rongga diantara butiran tanah dan membuat tanah menjadi lebih solid dan padat sehingga nilai densitas campuran tanah juga makin meningkat.

Referensi

- Departemen Permukiman dan Prasarana Wilayah. (2002). Panduan Geoteknik 1 (Proses Pembentukan dan Sifat-Sifat Dasar Tanah Lunak. In *Panduan Geoteknik Indonesia Timbunan Jalan pada Tanah Lunak*. Departemen Permukiman dan Prasarana Wilayah.
- Djamaluddin, A. R., Arsyad, A., Maricar, M. I., Oemar, I., Samang, L., & Burhan, M. I. (2020). Experimental study of pullout capacity of stard plate anchor. *Proceedings of the 7th International Conference on Asian and Pacific Coasts, APAC 2013*, *Apac*, 1068–1072.
- Gultom, J., Pratikso, & Rochim, A. (2022). Floating road construction on soft soil. *IOP Conference Series: Earth and Environmental Science*, 955(1), 1–8. https://doi.org/10.1088/1755-1315/955/1/012016
- Hardiyatmo, H. C. (2016). Alternatif Solusi Pembangunan Perkerasan Jalan Pada Subgrade Berdaya Dukung Rendah. *Infoteknik*, 2(7), 1–12.
- Harianto, T., Yunus, M., & Walenna, M. A. (2021). Bearing Capacity Of Raft-Pile Foundation Using Timber Pile On Soft Soil. *International Journal of GEOMATE*, 21(86), 108–114. https://doi.org/10.21660/2021.86.j2294
- Kementerian ESDM, B. G. (2019). *Atlas Sebaran Tanah Lunak*. Badan Geologi Kementerian Energi dan Sumber Daya Mineral.
- Kementerian Pekerjaan Umum dan Perumahan Rakyat, D. J. B. (2017). *Manual Perkerasan Jalan* (Pertama). Marga, Kementerian Pekerjaan Umum dan Perumahan Rakyat; Direktorat Jenderal Bina.
- Muhiddin, A. B., Harianto, T., & Djamaluddin, A. R. (2021). Studi Kuat Tekan Bebas Pada Tanah Timbunan Sebagai Lapisan Tanah Pondasi. *Prosiding Snast*, 36–43.
- Putranto, I. T. (2020). Pengaruh Stabilisasi Batu Zeolit Terhadap Nilai Cbr Pada Tanah Berbutir Halus. In *Tugas Akhir*. Universitas Islam Indonesia.
- Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil Mechanics in Engineering Practice. In *John wiley & sons* (p. 534).